
Precise ECG Platform on Modern Processors
S. Normalized Infloop

Department of Calculator Science
Theoretical Abstract Interpretation Testing Society

Pitsston, PA, United State Monads of America
yueyao@andrew.cmu.edu

Ivybridge N. Skylake
Institute of Nondeterministic Interpretation

Theoretical Abstract Interpretation Testing Society
Bosburgh, PA, United State Monads of America

yuningzh@andrew.cmu.edu

Abstract—The authors shivers in the howling wind on Pausch
Bridge, wondering why the processors in their backpacks gets
to sit comfortably and doing nothing instead of switching their
tiny transistors to keep their owners, who paid BIG money to
buy them, warm.

Index Terms—Thermal Systems, Ambient Heat Modulating
Technologies, Parallel Heating, 2D Computer Graphics, Edible
Content Generation

I. INTRODUCTION

Of all the things computing machines brought to the world,
there is one thing that people have consistently tried hard
to get rid of since the dawn of this field. Dissipating heat
in computing system has become a major design problem
in all levels of computer engineering. Modern processors is
on the verge of, if not already, hitting on one of the major
design boundaries known as the power wall (the chip’s overall
temperature and power consumption) [1]. Some people believe
that “the power wall is now arguably the defining limit of the
power of the modern CPU” [2].

If we are unable to curse of this everyday intensifying
brownian motion within the computing machines, why not
take advantage of it? Heat, as a resource, can be very useful
in a number of ways. In fact, heat is a very important
resource widely used in Edible Content Generation (ECG)
process. Edible Content Generation takes (usually) biological
specimens and apply a sequence of chemical and physical
decorations to them, generating human digestible contents.
This process is more commonly known as cooking.

It has been over a decade since people has tried to utilize
the heat generated from computing devices to facilitate ECG.
However, a vast majority of those attempts has failed and
results in either overheated computing devices or unsuccessful
ECG process. The authors believe the problem is that operators
of such process have very little control on the power of the
heating device, compared to tradition ECG platforms (more
commonly known as stoves). This work addresses this problem
by proposing a way to turn modern processors into precise
ECG platforms, which users have precise control of power
down to every second.

II. COMPUTING DEVICE BASED ECG PLATFORMS

A. Graphics Device Based ECG Platforms

Graphics card users has a long history of trying to use their
graphics devices as an ECG platform. In [3], the author tried to

use an Geforce GTX 480 graphics card to cook an egg. The
ECG software used to control the ECG process are games
and benchmarking software of unknown name. The resulting
edible content is shown in Fig. 1.

Fig. 1. Egg fried on an GTX480 graphic card.

The authors reports that the resulting edible content is, in
fact, too close to its primitive form to be edible (an effect more
commonly known as being “too raw”). The researchers blame
the ECG controlling software for the failure of the experiment
and suggests FurMark would give a better result. This research
further demonstrates the urgent need to design a precise and
easy to use ECG platform.

The authors also believe MVidia is in fact secretly en-
couraging users to use their product as an ECG platform to
attract more customers. We acquired two pieces of advertising
material (Fig. 2 and Fig. 3) from an unnamed source familiar
with the company media promotion strategy. Around a decade
a ago, GPGPU computation started off as an hack into graphics
rendering pipeline and now its’ one of the primary use of
GPUs in the inductry. We believe history will repeat itself in
the case of graphics device based ECG. Our work, although
focusing on CPUs, generalizes well to GPUs (TODO: give
this wild claim some justification!).

B. CPU Based ECG Platforms

Users has also tried use CPU as ECG platforms. C. C. Chan-
nel [4] demonstrated in a YourTube Video series the possibility
of using Ontel processors to generate various kinds of edible
contents. In their experiments, bacon, spaghetti, and even pop
corns are processed through an Ontel processor. The software
used to control the ECG platform is not known.

Fig. 2. Early promotion material used for MVidia GTX480.

Fig. 3. Promotion material for MVidia RTX2080 for Chinese market.

Some of the experiments do provide valid results. The au-
thors are able to obtain a few edible content with great quality.
However, in “Cooking with Ontel 5 - The Nearly Indestructible
Celeroff D”, the authors lost one of their experimentation
platform due to overheating.

This highlights the need for a precise ECG platform. If
the user sets the power too high for too long, the user might
end up losing the hardware. On the other hand, if the ECG
platform provides insufficient power, the edible content may
be too close to its primitive form to be safely consumed by
the user.

The fact that modern processors are multi-core and super-
scalar presents more challenge to building a precise ECG
platform. The ECG platform will have to orchestrate work
across different cores so that the overall power stays constant.

Fig. 4. Fork facilitated ECG with Ontel Celeroff D processors.

III. SYSTEM ARCHITECTURE

The goal of this work is to implement a precise ECG
platform on a modern processor. Modern processors refers to
processors with many cores and possibly SMT support. By
saying precise we wish to grant users very fined grained con-
trol of ECG platform power output for every second. Control-
ling power consumption of processors roughly translates into
controlling CPU utilization rate [5]. In conclusion, we need
to design a system that gives user control on CPU utilization,
down to every second, on modern multi-core processors.

A. Load generation by frequency modulation.

Fig. 5. Broker dispatches tiny chunk of work to threads.

Our system is built upon a standard broker-worker ar-
chitecture. A globally shared broker will generate work for

each thread. Each thread independently obtains jobs from the
broker, executes it, and starts over. There are two types of
jobs:
• SLEEP. The thread will sleep for a small period of time.
• SPIN. The thread will spin in a tight loop for a small

period of time.
Usually the size of both jobs is set to 1 ms. The broker

randomly generates jobs based on a desired system load. For
example, if the desired CPU utilization is 10%, the broker
has a 1/10 probability of generating a SPIN work. It should
be self evident that this strategy indeed achieves the required
CPU utilization. The proof is left as an exercise for the reader.
Essentially this scheme achieves a certain system load by
modulating frequency of processor spinning. This scheme is
thus termed (job) frequency modulation. The probability of
generating a spin job is termed spin rate, denoted by s.

This scheme is better than the length modulation scheme,
where we adjust the length of spinning jobs relative to sleep
job. Frequency modulation provides a more stable CPU load
over time (less variation in utilization). For every (large
enough) time window, the average CPU utilization will be
identical regardless where the window is. On the other hand,
frequency modulation helps to achieve precise control of CPU
utilization.

B. Load compensation by PI controller.

It is often the case where people need to work while
using ECG platforms. This causes the problem if the user is
working on the computing device while its being used as an
ECG platform. The workload generated by the user will very
likely affect overall CPU utilization and increase power output,
which may overcook edible contents, or worse, destroys the
device. It is essential for the ECG platform to be able to
compensate for the load.

Due to the unpredictable nature of the user workload, it will
be very hard to model (even reliably measure) user workload
online. Here we took a feedback control system approach. We
attach what is known as an proportionate-integral controller
(PI controller) to the output. For those unfamiliar with the
concept, we provide the following explanation.

For every time step, there exists a desired CPU utilization
L0. It also measures the current CPU utilization, which
denoted as L. The error e as this time step is defined as
e , L−L0. Clearly e is a function of time t, The compensation
factor s′ is calculated as

s′ , P e(t) + I

∫ t

0

e(t) dt

where P and I are two coefficients termed proportionate
coefficient and integral coefficient. Finally, if the spin rate
dictated by desired CPU utilization is s0, then the actual spin
rate used by the broker will be s = s0 + s′.

Intuitively, the P -term compensates for sudden changes in
user load, while the I-term compensates for long running user
load. To ensure negative feedback, both P and I must be
negative.

C. Intuitive load specification.

Our proposed ECG system features a very intuitive way
for the user to specify the desired load. Since many users of
ECG systems are not tech-savvy, it’s very important to keep
the interface simple. The users of our system may specify a
“program” by supplying a textual file, whose contents mimics
the desired shape of CPU utilization graph (except the time is
the Y axis).

For example, the following config file specifies that the
system should run a loop that utilization is 40%, 80%, 20%,
70% for the first, second, third, and fourth second of each
iteration.

||||
||||||||
||
|||||||

This interface is intuitive and very easy to use. It is so simple
that only one character is involved, and no formal specification
or documentation is needed to understand this format. We
name this form YAMMY as in Yet Another Markup-lang? My
God! format. The authors are convinced that this format will
be as popular in the field of ECG platform research as JSON
in machine learning research.

IV. RESULTS

We implemented our work and tested the work on one of
GHC machines. Unfortunately the authors are denied physical
access to GHC machines the moment the told the administra-
tion staff that want to perform ECG experiment on one of their
computers. The authors have no idea why the administration
staff holds such hostility to legit scientific research and edible
contents. The best we have is running our program while
monitoring CPU utilization.

Fig. 6. Experimenting a sine like ECG control function.

We specify an sine-like control function to test our imple-
mentation. The testing platform comes with an Ontel Xeon
E5-1660 CPU, which contains 8 cores, each with 2-way SMT.
As you can see, our results proves the effectiveness of our

approach. Our ECG program is able to provide precise control
on the CPU.

Fig. 7. Swift change in power output is also supported.

Fig. 7 tests the system’s response time under quickly
changing load specification. The result shows that the ECG
program is able to precisely and quickly response to change
in required power. The authors believe preparing edible content
using our platform will be a pleasant and worry free process.

V. CONCLUSION

The code for this work is available on GitHub at https:
//github.com/codeworm96/heat. Since the authors
are denied physical access to GHC machines, the authors
believes there is no future of ECG platform research un-
less administration staff stop discriminating ECG platform
researchers. Whats the point of doing ECG research when
you cannot conduct proper ECG experiments? This field is
DOOMED, dude! Get out! Learn you a Haskell for greater
good [6].

REFERENCES

[1] D. A. Patterson, “Future of computer architecture,” in Berkeley EECS
Annual Research Symposium (BEARS), College of Engineering, UC
Berkeley, US, 2006.

[2] C. Mims. (2010) Why cpus aren’t getting any faster.
[Online]. Available: https://www.technologyreview.com/s/421186/
why-cpus-arent-getting-any-faster/

[3] JEGX. (2010) Cook your eggs with a geforce gtx
480. [Online]. Available: https://www.geeks3d.com/20100331/
cook-your-eggs-with-a-geforce-gtx-480/

[4] C. C. Channel. (2010) Cooking with intel. [Online]. Available: \url{https:
//www.youtube.com/results?search query=Cooking+with+Intel}

[5] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH computer architecture
news, vol. 35, no. 2. ACM, 2007, pp. 13–23.

[6] R. Harper, Practical foundations for programming languages. Cambridge
University Press, 2016.

